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Synthesis of montiporynes A and B†
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Abstract—Montiporynes A and B, that were among the recently isolated diacetylenic ketones from the stony coral Montipora sp.,
and reported to possess in vitro cytotoxic activity against several human solid tumor cells, have been synthesized in three simple
steps from readily available materials. © 2002 Elsevier Science Ltd. All rights reserved.

After being long ignored, hard corals have attracted
much attention in recent years as sources of interesting
bioactive natural products.1 Among these marine
metabolites are a number of diacetylenic compounds,
mostly isolated from hermaphroditic scleractinian
corals such as Montipora digitata, that have been
reported since 1990.2 There are, however, few synthetic
accounts of these naturally occurring diynes.2b,3

Recently, there was a report of several new diacetylenic
ketones found in the hard coral Montipora sp. that were
shown to have varying in vitro cytotoxicities against a
number of human solid tumor cell lines.4 The reported
biological assay of two of these ketones, (E)- and
(Z)-3-pentadecene-5,7-diyn-2-one, known as mon-
tiporyne A (1) and montiporyne B (2), respectively, are
listed in Table 1.

In this communication we describe an expeditious syn-
thesis of 1 and 2. The first step of the synthetic proto-

col, as outlined in Scheme 1, is the quantitative
conversion of 1-nonyne to 1-iodononyne (3) using N-
iodosuccinimide and a catalytic amount of silver
nitrate.5 This iodination method appears to be superior,
in terms of yield as well as experimental convenience, to
those that involve the use of butyllithium3 and ethyl-
magnesium bromide.6 In the next step, the improved
procedure of Alami and Ferri was employed to couple
3 with propargyl alcohol to afford 2,4-dodecadiynyl
alcohol (4) in a yield of 89% after purification.7 Indeed,
the unsymmetrical diyne 4 was a key intermediate in
the synthesis of montiporic acids A and B,3 and has
been also accessed in other ways.2b,8 Finally, the Swern
oxidation of 4 followed by an in situ Wittig reaction
with acetylmethylene-triphenylphosphorane led to 1 in
a yield of 58%. However, we noticed that 1, if allowed
to stand at room temperature, began to isomerize to 2
within hours. The ratio of 1:2 at equilibrium appears to
be approximately 3:1 in favor of the trans isomer.9 The

Table 1. In vitro cytotoxicities (ED50, �g/mL) of 1 and 2 against human solid tumor cells.a Data is from Ref. 4

XF498 HCT15Compound A549 SK-OV-3 SK-MEL-2

3.2 (0.8)1.4 (0.8)3.2 (0.8)�50 (0.8) 3.2 (0.8)1 (cisplatin)
�50 (0.6)2 (cisplatin) 25.9 (0.6) �50 (0.6)42.6 (0.6) �50 (0.6)

a A549: human lung cancer; SK-OV-3: human ovarian cancer; SK-MEL-2: human skin cancer; XF498: human CNS cancer; HCT15: human colon
cancer. Numbers in parentheses correspond to cisplatin.
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Scheme 1.

separation of 1 and 2 was accomplished by means of
flash chromatography over silica gel using ether/hex-
ane (0.5/99.5) as the eluent. The two isomers could be
readily distinguished by examining the splitting pat-
tern of the olefinic protons which showed a larger
coupling constant (J=16 Hz) for the trans compound
relative to its cis isomer (J=12 Hz). A comparison of
spectral data clearly indicates that our synthetic sam-
ples are the same as the naturally occurring materi-
als.10

In conclusion, we have developed a convenient proce-
dure that makes available several hundred milligrams
of these two interesting marine metabolites which are
only found, at this time, in very minute quantities
from the natural sources. Further studies toward the
synthesis of the other ketones in this family are cur-
rently underway in our laboratory.

Supporting information: GC/MS data and 1H, 13C
NMR and IR spectra for montiporynes A and B (8
pages) is available upon request.
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10. Montiporyne A (1): 1H NMR (CD3OD) � 0.91 (t, J=7.0
Hz, 3H), 1.25–1.44 (m, 8H), 1.57 (q, J=6.8 Hz, 2H), 2.27
(s, 2H), 2.40 (t, J=6.9, 2H), 6.57 (d, J=16 Hz, 1H), 6.73
(d, J=16 Hz, 1H). 13C NMR (CD3OD) � 20.58, 24.05,
27.87, 27.88, 29.58, 30.23, 30.27, 33.24, 65.96, 73.04, 85.35,
90.88, 124.57, 141.59, 199.39. IR (neat) 2929, 2857, 1677,
1590, 1360, 1248, 1172, 957. HRMS (EI) calcd for C15H20O

216.1515; found 216.1515. Montiporyne B (2): 1H NMR
(CD3OD) � 0.93 (t, J=4.0 Hz, 3H), 1.28–1.48 (m, 4H), 1.59
(q, J=7.2 Hz, 1H), 2.40–2.45 (m, 2H), 6.31 (d, J=11.9 Hz,
1H), 6.48 (d, J=11.8 Hz, 1H). 13C NMR (CD3OD) � 14.59,
20.42, 23.84, 29.39, 30.03, 30.09, 30.30, 33.04, 65.84, 72.87,
87.50, 91.34, 120.99, 140.80, 199.10. IR (neat) 2929, 2857,
2225, 1670, 1582, 1175. LRMS (EI) 216 (M+).


	Synthesis of montiporynes A and B
	Acknowledgements
	References


